Warning: file_put_contents(aCache/aDaily/post/opendatascience/-2249-2250-2249-): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Data Science by ODS.ai 🦜 | Telegram Webview: opendatascience/2250 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Deep Cogito представила серию языковых моделей с открытым исходным кодом.

Deep Cogito выпустила семейство языковых моделей размером 3B, 8B, 14B, 32B и 70B параметров, которые уже доступны для загрузки.

По заявлению разработчиков, их модели превосходят аналогичные открытые решения от LLaMA, DeepSeek и Qwen в большинстве стандартных бенчмарков. Например, 70B-версия обходит новую 109B MoE-модель Llama 4, несмотря на меньший размер.

Все модели обучены с помощью метода Iterated Distillation and Amplification (IDA) — стратегии, которая сочетает итеративное самоулучшение и «сжатие» интеллекта для преодоления ограничений, накладываемых человеческим контролем.

Суть IDA проста: сначала модель «усиливает» свои способности, тратя больше вычислительных ресурсов на поиск решений через CoT, а затем «дистиллирует» эти улучшения в свои параметры. Такой цикл повторяется, создавая петлю обратной связи — каждая итерация делает модель умнее, а её мышление эффективнее. По словам команды, этот подход не только масштабируем, но и быстрее, чем RLHF.

Семейство поддерживает 2 режима работы: стандартный (прямой ответ) и «рефлексивный», где система сначала обдумывает запрос, как это реализовано в Claude 3.7. Они оптимизированы для программирования, вызова функций и агентских сценариев, но без акцента на CoT — разработчики считают, что короткие шаги эффективнее в реальных задачах.

Уже в ближайшие месяцы ожидаются версии на 109B, 400B и 671B параметров и вариации с MoE-архитектурой.

Модели доступны на Hugging Face, Ollama и через API Fireworks AI/Together AI.

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/opendatascience/2250
Create:
Last Update:

🌟 Deep Cogito представила серию языковых моделей с открытым исходным кодом.

Deep Cogito выпустила семейство языковых моделей размером 3B, 8B, 14B, 32B и 70B параметров, которые уже доступны для загрузки.

По заявлению разработчиков, их модели превосходят аналогичные открытые решения от LLaMA, DeepSeek и Qwen в большинстве стандартных бенчмарков. Например, 70B-версия обходит новую 109B MoE-модель Llama 4, несмотря на меньший размер.

Все модели обучены с помощью метода Iterated Distillation and Amplification (IDA) — стратегии, которая сочетает итеративное самоулучшение и «сжатие» интеллекта для преодоления ограничений, накладываемых человеческим контролем.

Суть IDA проста: сначала модель «усиливает» свои способности, тратя больше вычислительных ресурсов на поиск решений через CoT, а затем «дистиллирует» эти улучшения в свои параметры. Такой цикл повторяется, создавая петлю обратной связи — каждая итерация делает модель умнее, а её мышление эффективнее. По словам команды, этот подход не только масштабируем, но и быстрее, чем RLHF.

Семейство поддерживает 2 режима работы: стандартный (прямой ответ) и «рефлексивный», где система сначала обдумывает запрос, как это реализовано в Claude 3.7. Они оптимизированы для программирования, вызова функций и агентских сценариев, но без акцента на CoT — разработчики считают, что короткие шаги эффективнее в реальных задачах.

Уже в ближайшие месяцы ожидаются версии на 109B, 400B и 671B параметров и вариации с MoE-архитектурой.

Модели доступны на Hugging Face, Ollama и через API Fireworks AI/Together AI.

@ai_machinelearning_big_data

BY Data Science by ODS.ai 🦜





Share with your friend now:
tg-me.com/opendatascience/2250

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Data Science by ODS ai 🦜 from tr


Telegram Data Science by ODS.ai 🦜
FROM USA